Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G415-G418, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2279652

ABSTRACT

Diarrhea, often severe, is a recognized and frequently early symptom during acute COVID-19 infection and may persist or develop for the first time in patients with long-COVID, with socioeconomic consequences. Diarrheal mechanisms in these cases are poorly understood. There is evidence for disruption of intestinal epithelial barrier function and also for changes in the gut microbiome, which is critical for gut immunity and metabolism. Whether the SARS-CoV-2 virus has adverse effects on intestinal transport proteins is unclear. However, the ability of the virus to inhibit expression and activity of an aldosterone-regulated epithelial sodium (Na+) channel (ENaC) present in human distal colon, which is responsible for Na+ and water salvage, points to possible disruption of other intestinal transport proteins during COVID-19 infection. In this Perspective, we develop this idea by highlighting possible intestinal transport protein targets for the SARS-CoV-2 virus and discussing how their interactions might be explored in the laboratory.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Epithelial Sodium Channels/metabolism , Post-Acute COVID-19 Syndrome , Diarrhea
2.
J Biol Chem ; 298(12): 102624, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2082398

ABSTRACT

Broadly neutralizing antibodies have huge potential as novel antiviral therapeutics due to their ability to recognize highly conserved epitopes that are seldom mutated in viral variants. A subset of bovine antibodies possess an ultralong complementarity-determining region (CDR)H3 that is highly adept at recognizing such conserved epitopes, but their reactivity against Sarbecovirus Spike proteins has not been explored previously. Here, we use a SARS-naïve library to isolate a broadly reactive bovine CDRH3 that binds the receptor-binding domain of SARS-CoV, SARS-CoV-2, and all SARS-CoV-2 variants. We show further that it neutralizes viruses pseudo-typed with SARS-CoV Spike, but this is not by competition with angiotensin-converting enzyme 2 (ACE2) binding. Instead, using differential hydrogen-deuterium exchange mass spectrometry, we demonstrate that it recognizes the major site of vulnerability of Sarbecoviruses. This glycan-shielded cryptic epitope becomes available only transiently via interdomain movements of the Spike protein such that antibody binding triggers destruction of the prefusion complex. This proof of principle study demonstrates the power of in vitro expressed bovine antibodies with ultralong CDRH3s for the isolation of novel, broadly reactive tools to combat emerging pathogens and to identify key epitopes for vaccine development.

SELECTION OF CITATIONS
SEARCH DETAIL